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“There’s gold in them thar hills!”1

For many decades, some powerful trends have been in place. Computer hardware has rap-
idly been getting faster, cheaper and smaller. Internet bandwidth (that is, its information
carrying capacity) has rapidly been getting larger and cheaper. And quality computer soft-
ware has become ever more abundant and essentially free or nearly free through the “open
source” movement. Soon, the “Internet of Things” will connect tens of billions of devices
of every imaginable type. These will generate enormous volumes of data at rapidly increas-
ing speeds and quantities. 

Not so many years ago, if people had told us that we’d write a college-level introduc-
tory programming textbook with words like “Big Data” and “Cloud” in the title and a
graphic of a multicolored whale (emblematic of “big”) on the cover, our reaction might
have been, “Huh?” And, if they’d told us we’d include AI (for artificial intelligence) in the
title, we might have said, “Really? Isn’t that pretty advanced stuff for novice programmers?” 

If people had said, we’d include “Data Science” in the title, we might have responded,
“Isn’t data already included in the domain of ‘Computer Science’? Why would we need a
separate academic discipline for it?” Well, in programming today, the latest innovations
are “all about the data”—data science, data analytics, big data, relational databases (SQL),
and NoSQL and NewSQL databases. 

So, here we are! Welcome to Intro to Python for Computer Science and Data Science:
Learning to Program with AI, Big Data and the Cloud. 

In this book, you’ll learn hands-on with today’s most compelling, leading-edge com-
puting technologies—and, as you’ll see, with an easily tunable mix of computer science
and data science appropriate for introductory courses in those and related disciplines. And,
you’ll program in Python—one of the world’s most popular languages and the fastest
growing among them. In this Preface, we present the “soul of the book.” 

Professional programmers often quickly discover that they like Python. They appre-
ciate its expressive power, readability, conciseness and interactivity. They like the world of
open-source software development that’s generating an ever-growing base of reusable soft-
ware for an enormous range of application areas.

Whether you’re an instructor, a novice student or an experienced professional pro-
grammer, this book has much to offer you. Python is an excellent first programming lan-
guage for novices and is equally appropriate for developing industrial-strength applications.
For the novice, the early chapters establish a solid programming foundation.

We hope you’ll find Intro to Python for Computer Science and Data Science educational,
entertaining and challenging. It has been a joy to work on this project. 

1. Source unknown, frequently misattributed to Mark Twain.

Preface
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Python for Computer Science and Data Science Education
Many top U.S. universities have switched to Python as their language of choice for teach-
ing introductory computer science, with “eight of the top 10 CS departments (80%), and
27 of the top 39 (69%)” using Python.2 It’s now particularly popular for educational and
scientific computing,3 and it recently surpassed R as the most popular data science pro-
gramming language.4,5,6 

Modular Architecture 
We anticipate that the computer science undergraduate curriculum will evolve to include
a data science component—this book is designed to facilitate that and to meet the needs
of introductory data science courses with a Python programming component. 

The book’s modular architecture (please see the Table of Contents graphic on the
book’s first page) helps us meet the diverse needs of computer science, data science and
related audiences. Instructors can adapt it conveniently to a wide range of courses offered
to students drawn from many majors. 

Chapters 1–11 cover traditional introductory computer science programming topics.
Chapters 1–10 each include an optional brief Intro to Data Science section introducing
artificial intelligence, basic descriptive statistics, measures of central tendency and disper-
sion, simulation, static and dynamic visualization, working with CSV files, pandas for data
exploration and data wrangling, time series and simple linear regression. These help you
prepare for the data science, AI, big data and cloud case studies in Chapters 12–17, which
present opportunities for you to use real-world datasets in complete case studies. 

After covering Python Chapters 1–5 and a few key parts of Chapters 6–7, you’ll be
able to handle significant portions of the data science, AI and big data case studies in
Chapters 12–17, which are appropriate for all contemporary programming courses:

• Computer science courses will likely work through more of Chapters 1–11 and
fewer of the Intro to Data Science sections in Chapters 1–10. CS instructors will
want to cover some or all of the case-study Chapters 12–17. 

• Data science courses will likely work through fewer of Chapters 1–11, most or all
of the Intro to Data Science sections in Chapters 1–10, and most or all of the
case-study Chapters 12–17. 

The “Chapter Dependencies” section of this Preface will help instructors plan their syllabi
in the context of the book’s unique architecture.

Chapters 12–17 are loaded with cool, powerful, contemporary content. They present
hands-on implementation case studies on topics such as supervised machine learning, unsu-
pervised machine learning, deep learning, reinforcement learning (in the exercises), natural

2. Guo, Philip., “Python Is Now the Most Popular Introductory Teaching Language at Top U.S. Univer-
sities,” ACM, July 07, 2014, https://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-
the-most-popular-introductory-teaching-language-at-top-u-s-universities/fulltext.

3. https://www.oreilly.com/ideas/5-things-to-watch-in-python-in-2017.
4. https://www.kdnuggets.com/2017/08/python-overtakes-r-leader-analytics-data-

science.html.
5. https://www.r-bloggers.com/data-science-job-report-2017-r-passes-sas-but-python-

leaves-them-both-behind/.
6. https://www.oreilly.com/ideas/5-things-to-watch-in-python-in-2017.
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language processing, data mining Twitter, cognitive computing with IBM’s Watson, big
data and more. Along the way, you’ll acquire a broad literacy of data science terms and con-
cepts, ranging from briefly defining terms to using concepts in small, medium and large pro-
grams. Browsing the book’s detailed index will give you a sense of the breadth of coverage. 

Audiences for the Book
The modular architecture makes this book appropriate for several audiences: 

• All standard Python computer science and related majors. First and foremost, our
book is a solid contemporary Python CS 1 entry. The computing curriculum rec-
ommendations from the ACM/IEEE list five types of computing programs: Com-
puter Engineering, Computer Science, Information Systems, Information
Technology and Software Engineering.7 The book is appropriate for each of these. 

• Undergraduate courses for data science majors—Our book is useful in many
data science courses. It follows the curriculum recommendations for integration
of all the key areas in all courses, as appropriate for intro courses. In the proposed
data science curriculum, the book can be the primary textbook for the first com-
puter science course or the first data science course, then be used as a Python ref-
erence throughout the upper curriculum. 

• Service courses for students who are not computer science or data science majors.

• Graduate courses in data science—The book can be used as the primary text-
book in the first course, then as a Python reference in other graduate-level data
science courses. 

• Two-year colleges—These schools will increasingly offer courses that prepare
students for data science programs in the four-year colleges—the book is an ap-
propriate option for that purpose. 

• High schools—Just as they began teaching computer classes in response to strong
interest, many are already teaching Python programming and data science class-
es.8 According to a recent article on LinkedIn, “data science should be taught in
high school,” where the “curriculum should mirror the types of careers that our
children will go into, focused directly on where jobs and technology are going.”9

We believe that data science could soon become a popular college advanced-
placement course and that eventually there will be a data science AP exam.

• Professional industry training courses. 

Key Features 

KIS (Keep It Simple), KIS (Keep it Small), KIT (Keep it Topical)
• Keep it simple—In every aspect of the book and its instructor and student sup-

plements, we strive for simplicity and clarity. For example, when we present nat-

7. https://www.acm.org/education/curricula-recommendations.
8. http://datascience.la/introduction-to-data-science-for-high-school-students/.
9. https://www.linkedin.com/pulse/data-science-should-taught-high-school-rebecca-

croucher/.
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ural language processing, we use the simple and intuitive TextBlob library rather
than the more complex NLTK. In general, when multiple libraries could be used
to perform similar tasks, we use the simplest one.

• Keep it small—Most of the book’s 538 examples are small—often just a few lines
of code, with immediate interactive IPython feedback. We use large examples as
appropriate in approximately 40 larger scripts and complete case studies.

• Keep it topical—We read scores of recent Python-programming and data science
textbooks and professional books. In all we browsed, read or watched about
15,000 current articles, research papers, white papers, videos, blog posts, forum
posts and documentation pieces. This enabled us to “take the pulse” of the
Python, computer science, data science, AI, big data and cloud communities to
create 1566 up-to-the-minute examples, exercises and projects (EEPs). 

IPython’s Immediate-Feedback, Explore, Discover and Experiment Pedagogy
• The ideal way to learn from this book is to read it and run the code examples in

parallel. Throughout the book, we use the IPython interpreter, which provides
a friendly, immediate-feedback, interactive mode for quickly exploring, discover-
ing and experimenting with Python and its extensive libraries.

• Most of the code is presented in small, interactive IPython sessions (which we
call IIs). For each code snippet you write, IPython immediately reads it, evaluates
it and prints the results. This instant feedback keeps your attention, boosts learn-
ing, facilitates rapid prototyping and speeds the software-development process. 

• Our books always emphasize the live-code teaching approach, focusing on com-
plete, working programs with sample inputs and outputs. IPython’s “magic” is that
it turns snippets into live code that “comes alive” as you enter each line. This pro-
motes learning and encourages experimentation. 

• IPython is a great way to learn the error messages associated with common errors.
We’ll intentionally make errors to show you what happens. When we say some-
thing is an error, try it to see what happens.

• We use this same immediate-feedback philosophy in the book’s 557 Self-Check
Exercises (ideal for “flipped classrooms”—we’ll soon say more about that phe-
nomenon) and many of the 471 end-of-chapter exercises and projects. 

Python Programming Fundamentals
• First and foremost, this is an introductory Python textbook. We provide rich cov-

erage of Python and general programming fundamentals. 

• We discuss Python’s programming models—procedural programming, func-
tional-style programming and object-oriented programming.

• We emphasize problem-solving and algorithm development.

• We use best practices to prepare students for industry. 

• Functional-style programming is used throughout the book as appropriate. A
chart in Chapter 4 lists most of Python’s key functional-style programming capa-
bilities and the chapters in which we initially cover many of them.

_ _ _ _ g y, y ,
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538 Examples, and 471 Exercises and Projects (EEPs)
• Students use a hands-on applied approach to learn from a broad selection of real-

world examples, exercises and projects (EEPs) drawn from computer science,
data science and many other fields.

• The 538 examples range from individual code snippets to complete computer
science, data science, artificial intelligence and big data case studies. 

• The 471 exercises and projects naturally extend the chapter examples. Each
chapter concludes with a substantial set of exercises covering a wide variety of
topics. This helps instructors tailor their courses to the unique requirements of
their audiences and to vary course assignments each semester. 

• The EEPs give you an engaging, challenging and entertaining introduction to
Python programming, including hands-on AI, computer science and data science. 

• Students attack exciting and entertaining challenges with AI, big data and cloud
technologies like natural language processing, data mining Twitter, machine
learning, deep learning, Hadoop, MapReduce, Spark, IBM Watson, key data sci-
ence libraries (NumPy, pandas, SciPy, NLTK, TextBlob, spaCy, BeautifulSoup,
Textatistic, Tweepy, Scikit-learn, Keras), key visualization libraries (Matplotlib,
Seaborn, Folium) and more.

• Our EEPs encourage you to think into the future. We had the following idea as we
wrote this Preface—although it’s not in the text, many similar thought-provoking
projects are: With deep learning, the Internet of Things and large numbers of TV
cameras trained on sporting events, it will become possible to keep automatic statis-
tics, review the details of every play and resolve instant-replay reviews immediately.
So, fans won’t have to endure the bad calls and delays common in today’s sporting
events. Here’s a thought—we can use these technologies to eliminate referees. Why
not? We’re increasingly entrusting our lives to other deep-learning-based technolo-
gies like robotic surgeons and self-driving cars!

• The project exercises encourage you to go deeper into what you’ve learned and
research technologies we have not covered. Projects are often larger in scope and
may require significant Internet research and implementation effort. 

• In the instructor supplements, we provide solutions to many exercises, including
most in the core Python Chapters 1–11. Solutions are available only to instruc-
tors—see the section “Instructor Supplements on Pearson’s Instructor Resource
Center” later in this Preface for details. We do not provide solutions to the proj-
ect and research exercises. 

• We encourage you to look at lots of demos and free open-source code examples
(available on sites such as GitHub) for inspiration on additional class projects, term
projects, directed-study projects, capstone-course projects and thesis research.

557 Self-Check Exercises and Answers
• Most sections end with an average of three Self-Check Exercises.

• Fill-in-the-blank, true/false and discussion Self Checks enable you to test your
understanding of the concepts you just studied.
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• IPython interactive Self Checks give you a chance to try out and reinforce the
programming techniques you just learned. 

• For rapid learning, answers immediately follow all Self-Check Exercises.

Avoid Heavy Math in Favor of English Explanations
• Data science topics can be highly mathematical. This book will be used in first com-

puter science and data science courses where students may not have deep mathe-
matical backgrounds, so we avoid heavy math, leaving it to upper-level courses. 

• We capture the conceptual essence of the mathematics and put it to work in our
examples, exercises and projects. We do this by using Python libraries such as sta-
tistics, NumPy, SciPy, pandas and many others, which hide the mathematical
complexity. So, it’s straightforward for students to get many of the benefits of
mathematical techniques like linear regression without having to know the math-
ematics behind them. In the machine-learning and deep-learning examples, we
focus on creating objects that do the math for you “behind the scenes.” This is one
of the keys to object-based programming. It’s like driving a car safely to your des-
tination without knowing all the math, engineering and science that goes into
building engines, transmissions, power steering and anti-skid braking systems. 

Visualizations
• 67 full-color static, dynamic, animated and interactive two-dimensional and

three-dimensional visualizations (charts, graphs, pictures, animations etc.) help
you understand concepts. 

• We focus on high-level visualizations produced by Matplotlib, Seaborn, pandas
and Folium (for interactive maps). 

• We use visualizations as a pedagogic tool. For example, we make the law of large
numbers “come alive” in a dynamic die-rolling simulation and bar chart. As the
number of rolls increases, you’ll see each face’s percentage of the total rolls grad-
ually approach 16.667% (1/6th) and the sizes of the bars representing the per-
centages equalize. 

• You need to get to know your data. One way is simply to look at the raw data. For
even modest amounts of data, you could rapidly get lost in the detail. Visualiza-
tions are especially crucial in big data for data exploration and communicating
reproducible research results, where the data items can number in the millions,
billions or more. A common saying is that a picture is worth a thousand words10—
in big data, a visualization could be worth billions or more items in a database.

• Sometimes, you need to “fly 40,000 feet above the data” to see it “in the large.”
Descriptive statistics help but can be misleading. Anscombe’s quartet, which
you’ll investigate in the exercises, demonstrates through visualizations that sig-
nificantly different datasets can have nearly identical descriptive statistics.

• We show the visualization and animation code so you can implement your own.
We also provide the animations in source-code files and as Jupyter Notebooks, so

10. https://en.wikipedia.org/wiki/A_picture_is_worth_a_thousand_words.
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you can conveniently customize the code and animation parameters, re-execute the
animations and see the effects of the changes. 

• Many exercises ask you to create your own visualizations.

Data Experiences
• The undergraduate data science curriculum proposal says “Data experiences

need to play a central role in all courses.”11

• In the book’s examples, exercises and projects (EEPs), you’ll work with many
real-world datasets and data sources. There’s a wide variety of free open datasets
available online for you to experiment with. Some of the sites we reference list
hundreds or thousands of datasets. We encourage you to explore these. 

• We collected hundreds of syllabi, tracked down instructor dataset preferences
and researched the most popular datasets for supervised machine learning, unsu-
pervised machine learning and deep learning studies. Many of the libraries you’ll
use come bundled with popular datasets for experimentation.

• You’ll learn the steps required to obtain data and prepare it for analysis, analyze
that data using many techniques, tune your models and communicate your
results effectively, especially through visualization.

Thinking Like a Developer
• You’ll work with a developer focus, using such popular sites as GitHub and

StackOverflow, and doing lots of Internet research. Our Intro to Data Science
sections and case studies in Chapters 12–17 provide rich data experiences.

• GitHub is an excellent venue for finding open-source code to incorporate into
your projects (and to contribute your code to the open-source community). It’s
also a crucial element of the software developer’s arsenal with version control
tools that help teams of developers manage open-source (and private) projects. 

• We encourage you to study developers’ code on sites like GitHub. 

• To get ready for career work in computer science and data science, you’ll use an
extraordinary range of free and open-source Python and data science libraries,
free and open real-world datasets from government, industry and academia, and
free, free-trial and freemium offerings of software and cloud services.

Hands-On Cloud Computing 
• Much of big data analytics occurs in the cloud, where it’s easy to scale dynamically

the amount of hardware and software your applications need. You’ll work with
various cloud-based services (some directly and some indirectly), including Twit-
ter, Google Translate, IBM Watson, Microsoft Azure, OpenMapQuest, geopy,
Dweet.io and PubNub. You’ll explore more in the exercises and projects.

• We encourage you to use free, free trial or freemium services from various cloud
vendors. We prefer those that don’t require a credit card because you don’t want

11. “Curriculum Guidelines for Undergraduate Programs in Data Science,” http://www.annualre-
views.org/doi/full/10.1146/annurev-statistics-060116-053930 (p. 18). 
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to risk accidentally running up big bills. If you decide to use a service that
requires a credit card, ensure that the tier you’re using for free will not auto-
matically jump to a paid tier.

Database, Big Data and Big Data Infrastructure
• According to IBM (Nov. 2016), 90% of the world’s data was created in the last

two years.12 Evidence indicates that the speed of data creation is accelerating.

• According to a March 2016 AnalyticsWeek article, within five years there will be
over 50 billion devices connected to the Internet and by 2020 we’ll be producing
1.7 megabytes of new data every second for every person on the planet!13

• We include an optional treatment of relational databases and SQL with SQLite.

• Databases are critical big data infrastructure for storing and manipulating the mas-
sive amounts of data you’ll process. Relational databases process structured data—
they’re not geared to the unstructured and semi-structured data in big data applica-
tions. So, as big data evolved, NoSQL and NewSQL databases were created to
handle such data efficiently. We include a NoSQL and NewSQL overview and a
hands-on case study with a MongoDB JSON document database.

• We include a solid treatment of big data hardware and software infrastructure in
Chapter 17, “Big Data: Hadoop, Spark, NoSQL and IoT (Internet of Things).”

Artificial Intelligence Case Studies
• Why doesn’t this book have an artificial intelligence chapter? After all, AI is on

the cover. In the case study Chapters 12–16, we present artificial intelligence
topics (a key intersection between computer science and data science), including
natural language processing, data mining Twitter to perform sentiment analy-
sis, cognitive computing with IBM Watson, supervised machine learning,
unsupervised machine learning, deep learning and reinforcement learning (in
the exercises). Chapter 17 presents the big data hardware and software infrastruc-
ture that enables computer scientists and data scientists to implement leading-
edge AI-based solutions.

Computer Science
• The Python fundamentals treatment in Chapters 1–10 will get you thinking like

a computer scientist. Chapter 11, “Computer Science Thinking: Recursion,
Searching, Sorting and Big O,” gives you a more advanced perspective—these are
classic computer science topics. Chapter 11 emphasizes performance issues. 

Built-In Collections: Lists, Tuples, Sets, Dictionaries
• There’s little reason today for most application developers to build custom data

structures. This is a subject for CS2 courses—our scope is strictly CS1 and the
corresponding data science course(s). The book features a solid two-chapter

12. https://public.dhe.ibm.com/common/ssi/ecm/wr/en/wrl12345usen/watson-customer-

engagement-watson-marketing-wr-other-papers-and-reports-wrl12345usen-20170719.pdf.
13. https://analyticsweek.com/content/big-data-facts/.

_ _ _ _ g y, y ,

https://analyticsweek.com/content/big-data-facts/
https://public.dhe.ibm.com/common/ssi/ecm/wr/en/wrl12345usen/watson-customer-engagement-watson-marketing-wr-other-papers-and-reports-wrl12345usen-20170719.pdf
https://public.dhe.ibm.com/common/ssi/ecm/wr/en/wrl12345usen/watson-customer-engagement-watson-marketing-wr-other-papers-and-reports-wrl12345usen-20170719.pdf


 Key Features 27

treatment of Python’s built-in data structures—lists, tuples, dictionaries and
sets—with which most data-structuring tasks can be accomplished. 

Array-Oriented Programming with NumPy Arrays and Pandas Series/DataFrames 
• We take an innovative approach in this book by focusing on three key data struc-

tures from open-source libraries—NumPy arrays, pandas Series and pandas
DataFrames. These libraries are used extensively in data science, computer sci-
ence, artificial intelligence and big data. NumPy offers as much as two orders of
magnitude higher performance than built-in Python lists.

• We include in Chapter 7 a rich treatment of NumPy arrays. Many libraries, such
as pandas, are built on NumPy. The Intro to Data Science sections in Chapters
7–9 introduce pandas Series and DataFrames, which along with NumPy arrays
are then used throughout the remaining chapters.   

File Processing and Serialization
• Chapter 9 presents text-file processing, then demonstrates how to serialize objects

using the popular JSON (JavaScript Object Notation) format. JSON is a com-
monly used data-interchange format that you’ll frequently see used in the data sci-
ence chapters—often with libraries that hide the JSON details for simplicity. 

• Many data science libraries provide built-in file-processing capabilities for load-
ing datasets into your Python programs. In addition to plain text files, we process
files in the popular CSV (comma-separated values) format using the Python
Standard Library’s csv module and capabilities of the pandas data science library. 

Object-Based Programming
• In all the Python code we studied during our research for this book, we rarely

encountered custom classes. These are common in the powerful libraries used by
Python programmers. 

• We emphasize using the enormous number of valuable classes that the Python
open-source community has packaged into industry standard class libraries.
You’ll focus on knowing what libraries are out there, choosing the ones you’ll
need for your app, creating objects from existing classes (usually in one or two
lines of code) and making them “jump, dance and sing.” This is called object-
based programming—it enables you to build impressive applications concisely,
which is a significant part of Python’s appeal. 

• With this approach, you’ll be able to use machine learning, deep learning, rein-
forcement learning (in the exercises) and other AI technologies to solve a wide
range of intriguing problems, including cognitive computing challenges like
speech recognition and computer vision. In the past, with just an introductory
programming course, you never would have been able to tackle such tasks. 

Object-Oriented Programming
• For computer science students, developing custom classes is a crucial object-

oriented programming skill, along with inheritance, polymorphism and duck
typing. We discuss these in Chapter 10.
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• The object-oriented programming treatment is modular, so instructors can pres-
ent basic or intermediate coverage. 

• Chapter 10 includes a discussion of unit testing with doctest and a fun card-
shuffling-and-dealing simulation.

• The six data science, AI, big data and cloud chapters require only a few straight-
forward custom class definitions. Instructors who do not wish to cover Chapter
10 can have students simply mimic our class definitions.

Privacy
• In the exercises, you’ll research ever-stricter privacy laws such as HIPAA (Health

Insurance Portability and Accountability Act) in the United States and GDPR
(General Data Protection Regulation) for the European Union. A key aspect of
privacy is protecting users’ personally identifiable information (PII), and a key
challenge with big data is that it’s easy to cross-reference facts about individuals
among databases. We mention privacy issues in several places throughout the book.

Security
• Security is crucial to privacy. We deal with some Python-specific security issues. 

• AI and big data present unique privacy, security and ethical challenges. In the ex-
ercises, students will research the OWASP Python Security Project (http://
www.pythonsecurity.org/), anomaly detection, blockchain (the technology be-
hind cryptocurrencies like BitCoin and Ethereum) and more. 

Ethics
• Ethics conundrum: Suppose big data analytics with AI predicts that a person with

no criminal record has a significant chance of committing a serious crime. Should
that person be arrested? In the exercises, you’ll research this and other ethical
issues, including deep fakes (AI-generated images and videos that appear to be
real), bias in machine learning and CRISPR gene editing. Students also investigate
privacy and ethical issues surrounding AIs and intelligent assistants, such as IBM
Watson, Amazon Alexa, Apple Siri, Google Assistant and Microsoft Cortana.
For example, just recently, a judge ordered Amazon to turn over Alexa recordings
for use in a criminal case.14

Reproducibility
• In the sciences in general, and data science in particular, there’s a need to repro-

duce the results of experiments and studies, and to communicate those results
effectively. Jupyter Notebooks are a preferred means for doing this.

• We provide you with a Jupyter Notebooks experience to help meet the reproduc-
ibility recommendations of the data science undergraduate curriculum proposal.

• We discuss reproducibility throughout the book in the context of programming
techniques and software such as Jupyter Notebooks and Docker.

14. https://techcrunch.com/2018/11/14/amazon-echo-recordings-judge-murder-case/.
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Transparency
• The data science curriculum proposal mentions data transparency. One aspect of

data transparency is the availability of data. Many governments and other organi-
zation now adhere to open-data principles, enabling anyone to access their data.15

We point you to a wide range of datasets that are made available by such entities. 

• Other aspects of data transparency include determining that data is correct and
knowing its origin (think, for example, of “fake news”). Many of the datasets we
use are bundled with key libraries we present, such as Scikit-learn for machine
learning and Keras for deep learning. We also point you to various curated data-
set repositories such as the University of California Irvine (UCI) Machine
Learning Repository (with 450+ datasets)16 and Carnegie Mellon University’s
StatLib Datasets Archive (with 100+ datasets).17

Performance
• We use the timeit profiling tool in several examples and exercises to compare

the performance of different approaches to performing the same tasks. Other per-
formance-related discussions include generator expressions, NumPy arrays vs.
Python lists, performance of machine-learning and deep-learning models, and
Hadoop and Spark distributed-computing performance.

Big Data and Parallelism 
• Computer applications have generally been good at doing one thing at a time.

Today’s more sophisticated applications need to be able to do many things in par-
allel. The human brain is believed to have the equivalent of 100 billion parallel
processors.18 For years we’ve written about parallelism at the program level,
which is complex and error-prone. 

• In this book, rather than writing your own parallelization code, you’ll let libraries
like Keras running over TensorFlow, and big data tools like Hadoop and Spark
parallelize operations for you. In this big data/AI era, the sheer processing require-
ments of massive data apps demand taking advantage of true parallelism provided
by multicore processors, graphics processing units (GPUs), tensor processing
units (TPUs) and huge clusters of computers in the cloud. Some big data tasks
could have thousands of processors working in parallel to analyze massive
amounts of data in reasonable time. Sequentializing such processing is typically
not an option, because it would take too long. 

15. https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digi-

tal/Our%20Insights/Big%20data%20The%20next%20frontier%20for%20innovation/

MGI_big_data_full_report.ashx (page 56).
16. https://archive.ics.uci.edu/ml/datasets.html.
17. http://lib.stat.cmu.edu/datasets/.
18. https://www.technologyreview.com/s/532291/fmri-data-reveals-the-number-of-

parallel-processes-running-in-the-brain/.
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Chapter Dependencies 
If you’re an instructor planning your course syllabus or a professional deciding which
chapters to read, this section will help you make the best decisions. Please read the one-
page Table of Contents on the first page of the book—this will quickly familiarize you
with the book’s unique architecture. Teaching or reading the chapters in order is easiest.
However, much of the content in the Intro to Data Science sections at the ends of Chap-
ters 1–10 and the case studies in Chapters 12–17 requires only Chapters 1–5 and small
portions of Chapters 6–10 as discussed below.

Part 1: Python Fundamentals Quickstart
We recommend that all courses cover Python Chapters 1–5:

• Chapter 1, Introduction to Computers and Python, introduces concepts that
lay the groundwork for the Python programming in Chapters 2–11 and the big
data, artificial-intelligence and cloud-based case studies in Chapters 12–17. The
chapter also includes test-drives of IPython and Jupyter Notebooks. 

• Chapter 2, Introduction to Python Programming, presents Python program-
ming fundamentals with code examples illustrating key language features. 

• Chapter 3, Control Statements and Program Development, presents Python’s
control statements, focuses on problem-solving and algorithm development,
and introduces basic list processing.

• Chapter 4, Functions, introduces program construction using existing functions
and custom functions as building blocks, presents simulation techniques with
random-number generation and introduces tuple fundamentals.

• Chapter 5, Sequences: Lists and Tuples, presents Python’s built-in list and tuple
collections in more detail and begins our introduction to functional-style pro-
gramming.

Part 2: Python Data Structures, Strings and Files19

The following summarizes inter-chapter dependencies for Python Chapters 6–9 and
assumes that you’ve read Chapters 1–5.

• Chapter 6, Dictionaries and Sets—The Intro to Data Science section is not
dependent on Chapter 6’s contents.

• Chapter 7, Array-Oriented Programming with NumPy—The Intro to Data
Science section requires dictionaries (Chapter 6) and arrays (Chapter 7).

• Chapter 8, Strings: A Deeper Look—The Intro to Data Science section requires
raw strings and regular expressions (Sections 8.11–8.12), and pandas Series and
DataFrame features from Section 7.14’s Intro to Data Science. 

• Chapter 9, Files and Exceptions—For JSON serialization, it’s useful to under-
stand dictionary fundamentals (Section 6.2). Also, the Intro to Data Science sec-
tion requires the built-in open function and the with statement (Section 9.3), and
pandas DataFrame features from Section 7.14’s Intro to Data Science. 

19. We could have included Chapter 5 in Part 2. We placed it in Part 1 because that’s the group of chap-
ters all courses should cover.
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