
Faster and smaller hardware, larger and cheaper Internet bandwidth, and abundant and near-free
software: these are some of the powerful trends in computing technologies that have emerged
over the past few decades, paving the way for enormous volumes of data being generated at
rapidly increasing speeds and quantities.

Since the latest innovations in programming today are “all about the data”—be it data science,
data analytics, big data, or databases—the authors have seamlessly integrated data science into
computer science topics to create a book that reaches several audiences in the field, their choice of
programming language being Python. Python is an excellent first programming language to learn for
beginners, but, because of its expressive power, readability, conciseness, and interactivity, it is equally
appropriate for professional programmers.

Key Features

•	 All the code in the book uses the IPython interpreter, which provides a friendly, immediate-
feedback, interactive mode for quickly exploring, discovering, and experimenting with Python
and its extensive libraries.

•	 The book uses Jupyter Notebooks to help meet the reproducibility recommendations of data
science undergraduate curricula. Jupyter Notebooks, part of a free, open-source project, enable
authors to combine text, graphics, audio, video, and interactive coding functionality for entering,
editing, executing, debugging, and modifying code quickly and conveniently in a web browser.

•	 Data science topics like machine learning, deep learning, and cognitive computing covered in the
later chapters see AI, big data, and cloud computing woven into them through case studies
that present opportunities to use real-world datasets.

•	 Privacy, security, and ethical challenges arising from AI and big data are discussed
throughout the book from a Python-specific point of view, with practical and relevant examples.

•	 Over 1500 examples, exercises, and projects drawn from computer science, data science,
and other fields provide an engaging introduction to Python programming. Students can attack
exciting challenges with AI, big data, and cloud technologies like IBM Watson, Hadoop, Spark, or
MapReduce.

This is a special edition of an established title widely used by
colleges and universities throughout the world. Pearson published
this exclusive edition for the benefit of students outside the
United States and Canada. If you purchased this book within the
United States or Canada, you should be aware that it has been
imported without the approval of the Publisher or Author.

Intro to Python
®

for Com
puter Science and D

ata Science
D

eitel • D
eitel

G
L

O
B

A
L

ED
IT

IO
N

GLOBAL
EDITION

GLOBAL
EDITION

Intro to Python®

for Computer Science and Data Science
Paul Deitel • Harvey Deitel

Learning to Program with AI, Big Data and the Cloud

CVR_DEIT4902_01_GE_CVR_Vivar.indd 1 29/07/21 9:50 AM

Digital Resources for Students

Your eBook provides 12-month access to digital resources that may include VideoNotes
(step-by-step video tutorials on programming concepts), source code, and more. Refer to
the preface in the textbook for a detailed list of resources.

Follow the instructions below to register for the Companion Website for Paul and Harvey
Deitel’s Intro to Python®: for Computer Science and Data Science, Global Edition.

	 1.	 Go to www.pearsonglobaleditions.com.
	 2.	 Enter the title of your textbook or browse by author name.
	 3.	 Click Companion Website.
	 4.	 Click Register and follow the on-screen instructions to create a login name

and password.

IMPORTANT:
This access code can only be used once. This subscription is valid for 12 months upon
activation and is not transferable.

For technical support, go to https://support.pearson.com/getsupport.

Use the login name and password you created during registration to start using the
online resources that accompany your textbook.

ISSPCD-WAHOO-DIARY-KALPA-FRACK-OOSSE

CVR_DEIT4902_01_GE_CVR_eBook.indd 1 08/06/21 10:01 AM

https://support.pearson.com/getsupport
http://www.pearsonglobaleditions.com

_ _ _ _ g y, y ,

D
S

14
. I

B
M

 W
at

so
n®

 a
nd

C

og
ni

ti
ve

 C
om

pu
ti

ng

D
S

In
tr

o:
 T

im
e

Se
rie

s
an

d
Si

m
pl

e
Li

ne
ar

 R
eg

re
ss

io
n

D
S

16
. D

ee
p

Le
ar

ni
ng

C
on

vo
lu

tio
na

l a
nd

 R
ec

ur
re

nt

N
eu

ra
l N

et
w

or
ks

; R
ei

nf
or

ce
m

en
t

Le
ar

ni
ng

 in
 th

e
Ex

er
ci

se
s

C
S

an
d

D
S

O
th

er
 T

op
ic

s
B

lo
g

C
S

11
. C

om
pu

te
r

Sc
ie

nc
e

T
hi

nk
in

g:
 R

ec
ur

si
on

,
Se

ar
ch

in
g,

 S
or

ti
ng

 a
nd

 B
ig

 O

D
S

15
. M

ac
hi

ne
 L

ea
rn

in
g:

C

la
ss

if
ic

at
io

n,
 R

eg
re

ss
io

n
an

d
C

lu
st

er
in

g

C
S

10
. O

bj
ec

t-
O

ri
en

te
d

Pr
og

ra
m

m
in

g

D
S

13
. D

at
a

M
in

in
g

T
w

it
te

r®
Se

nt
im

en
t A

na
ly

si
s,

 JS
O

N
 a

nd

W
eb

 S
er

vi
ce

s

C
S

1.
 I

nt
ro

du
ct

io
n

to

C
om

pu
te

rs
 a

nd
 P

yt
ho

n
D

S
12

. N
at

ur
al

 L
an

gu
ag

e
Pr

oc
es

si
ng

 (
N

LP
)

W
eb

 S
cr

ap
in

g
in

 th
e

Ex
er

ci
se

s

D
S

17
. B

ig
 D

at
a:

 H
ad

oo
p®

,
Sp

ar
k™

, N
oS

Q
L

an
d

Io
T

C
S

2.
 I

nt
ro

du
ct

io
n

to

Py
th

on
 P

ro
gr

am
m

in
g

D
S

In
tr

o:
 B

as
ic

 D
es

cr
ip

tiv
e

St
at

s

C
S

3.
 C

on
tr

ol
 S

ta
te

m
en

ts
 a

nd

Pr
og

ra
m

 D
ev

el
op

m
en

t

D
S

In
tro

: M
ea

su
re

s
of

 C
en

tra
l

Te
nd

en
cy

—
M

ea
n,

 M
ed

ia
n,

 M
od

e

C
S

4.
 F

un
ct

io
ns

D
S

In
tr

o:
 B

as
ic

 S
ta

tis
tic

s—

M
ea

su
re

s
of

 D
is

pe
rs

io
n

C
S

5.
 L

is
ts

 a
nd

 T
up

le
s

D
S

In
tr

o:
 S

im
ul

at
io

n
an

d
St

at
ic

V
is

ua
liz

at
io

n

C
S

7.
 A

rr
ay

-O
ri

en
te

d
Pr

og
ra

m
m

in
g

w
it

h
N

um
Py

H
ig

h-
Pe

rfo
rm

an
ce

 N
um

Py
 A

rra
ys

D
S

In
tr

o:

Pa
nd

as
 S

er
ie

s
an

d
D

at
aF

ra
m

es

D
S

In
tr

o:
 A

I—
at

 th
e

In
te

rs
ec

tio
n

of
 C

S
an

d
D

S

C
S:

 P
yt

ho
n

Fu
nd

am
en

ta
ls

 Q
ui

ck
st

ar
t

C
S:

 P
yt

ho
n

D
at

a
St

ru
ct

ur
es

,
St

ri
ng

s
an

d
Fi

le
s

C
S:

 P
yt

ho
n

H
ig

h-
En

d
T

op
ic

s
A

I,
 B

ig
 D

at
a

an
d

C
lo

ud

C
as

e
St

ud
ie

s

PA
R

T
 1

PA
R

T
 2

PA
R

T
 3

PA
R

T
 4

1.
Ch

ap
te

rs
 1

–1
1

m
ar

ke
d

CS
 a

re

tra
di

tio
na

l P
yt

ho
n

pr
og

ra
m

m
in

g
an

d
co

m
pu

te
r-s

ci
en

ce
 to

pi
cs

.
2.

Li
gh

t-t
in

te
d

bo
tto

m
 b

ox
es

 in

Ch
ap

te
rs

 1
–1

0
m

ar
ke

d
D

S
In

tro

ar
e

br
ie

f,
fri

en
dl

y
in

tro
du

ct
io

ns

to
 d

at
a-

sc
ie

nc
e

to
pi

cs
.

3.
Ch

ap
te

rs
 1

2–
17

 m
ar

ke
d

D
S

ar
e

Py
th

on
-b

as
ed

, A
I,

bi
g

da
ta

 a
nd

cl

ou
d

ch
ap

te
rs

, e
ac

h
co

nt
ai

ni
ng

se

ve
ra

l f
ul

l-i
m

pl
em

en
ta

tio
n

st
ud

ie
s.

4.

Fu
nc

tio
na

l-s
ty

le
 p

ro
gr

am
m

in
g

is
 in

te
gr

at
ed

 b
oo

k
w

id
e.

5.
Pr

ef
ac

e
ex

pl
ai

ns
 th

e
de

pe
nd

en
-

ci
es

 a
m

on
g

th
e

ch
ap

te
rs

.
6.

V
is

ua
liz

at
io

ns
 th

ro
ug

ho
ut

.

7.
 C

S
co

ur
se

s
m

ay
 c

ov
er

 m
or

e
of

th

e
Py

th
on

 c
ha

pt
er

s
an

d
le

ss

of
 th

e
D

S
co

nt
en

t.
V

ic
e

ve
rs

a
fo

r
D

at
a

Sc
ie

nc
e

co
ur

se
s.

8.
 W

e
pu

t C
ha

pt
er

 5
 in

 P
ar

t 1
. I

t’s

al
so

 a
 n

at
ur

al
 fi

t w
ith

 P
ar

t 2
.

Q
ue

st
io

ns
? d

e
i
t
e
l
@
d
e
i
t
e
l
.
c
o
m

C
S

6.
 D

ic
ti

on
ar

ie
s

an
d

Se
ts

D
S

In
tr

o:
 S

im
ul

at
io

n
an

d
D

yn
am

ic
 V

is
ua

liz
at

io
n

In
tr

o
to

 P
yt

ho
n®

 fo
r

C
om

pu
te

r
Sc

ie
nc

e
an

d
D

at
a

Sc
ie

nc
e

Le
ar

ni
ng

 to
 P

ro
gr

am
 w

ith
 A

I,
Bi

g
D

at
a

an
d

th
e

C
lo

ud
by

 P
au

l D
ei

te
l &

 H
ar

ve
y

D
ei

te
l

C
S

9.
 F

ile
s

an
d

Ex
ce

pt
io

ns

D
S

In
tr

o:
 L

oa
di

ng
 D

at
as

et
s

fro
m

C

SV
 F

ile
s

in
to

 P
an

da
s

D
at

aF
ra

m
es

C
S

8.
 S

tr
in

gs
: A

 D
ee

pe
r

Lo
ok

In
cl

ud
es

 R
eg

ul
ar

 E
xp

re
ss

io
ns

D
S

In
tr

o:
 P

an
da

s,

Re
gu

la
r E

xp
re

ss
io

ns
 a

nd

D
at

a
W

ra
ng

lin
g

mailto:deitel@deitel.com

_ _ _ _ g y, y ,

This page is intentionally left blank

_ _ _ _ g y, y ,

Cover Designer: Straive

Cover Art: ©Yuriy2012/Shutterstock

Pearson Education Limited

KAO Two
KAO Park
Hockham Way
Harlow
CM17 9SR
United Kingdom

and Associated Companies throughout the world

Visit us on the World Wide Web at: www.pearsonglobaleditions.com

Please contact https://support.pearson.com/getsupport/s/contactsupport with any queries on this content.

© Pearson Education Limited 2022

The rights of Paul Deitel and Harvey Deitel to be identified as the authors of this work have been asserted by them in accordance with the
Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Intro to Python for Computer Science and Data Science: Learning to Program with
AI, Big Data and The Cloud, ISBN 978-0-13-540467-6 by Paul Deitel and Harvey Deitel published by Pearson Education © 2020.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a license
permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street,
London EC1N 8TS. For information regarding permissions, request forms and the appropriate contacts within the Pearson Education
Global Rights & Permissions department, please visit www.pearsoned.com/permissions/.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in the author or
publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation with or
endorsement of this book by such owners.

Attributions of third-party content appear on the appropriate page within the text.

PEARSON, ALWAYS LEARNING, and MYLAB are exclusive trademarks owned by Pearson Education, Inc. or its affiliates in the U.S.
and/or other countries. Deitel and the double-thumbs-up bug are registered trademarks of Deitel and Associates, Inc.

Unless otherwise indicated herein, any third-party trademarks that may appear in this work are the property of their respective owners and
any references to third-party trademarks, logos or other trade dress are for demonstrative or descriptive purposes only. Such references are
not intended to imply any sponsorship, endorsement, authorization, or promotion of Pearson’s products by the owners of such marks, or
any relationship between the owner and Pearson Education, Inc. or its affiliates, authors, licensees, or distributors.

This eBook is a standalone product and may or may not include all assets that were part of the print version. It also does not provide access
to other Pearson digital products like MyLab and Mastering. The publisher reserves the right to remove any material in this eBook at any
time.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

ISBN 10: 1-292-36490-4 (print)
ISBN 13: 978-1-292-36490-2 (print)
ISBN 13: 978-1-292-36493-3 (uPDF eBook)

http://www.pearsoned.com/permissions/
https://support.pearson.com/getsupport/s/contactsupport
http://www.pearsonglobaleditions.com

_ _ _ _ g y, y ,

_ _ _ _ g y, y ,

In Memory of Marvin Minsky,
a founding father of
artificial intelligence

It was a privilege to be your student in two
artificial-intelligence graduate courses at M.I.T.
You inspired your students to think beyond limits.

Harvey Deitel

Preface 19

Before You Begin 45

1 Introduction to Computers and Python 49
1.1 Introduction 50
1.2 Hardware and Software 51

1.2.1 Moore’s Law 52
1.2.2 Computer Organization 52

1.3 Data Hierarchy 54
1.4 Machine Languages, Assembly Languages and High-Level Languages 57
1.5 Introduction to Object Technology 58
1.6 Operating Systems 61
1.7 Python 64
1.8 It’s the Libraries! 66

1.8.1 Python Standard Library 66
1.8.2 Data-Science Libraries 66

1.9 Other Popular Programming Languages 68
1.10 Test-Drives: Using IPython and Jupyter Notebooks 69

1.10.1 Using IPython Interactive Mode as a Calculator 69
1.10.2 Executing a Python Program Using the IPython Interpreter 71
1.10.3 Writing and Executing Code in a Jupyter Notebook 72

1.11 Internet and World Wide Web 77
1.11.1 Internet: A Network of Networks 77
1.11.2 World Wide Web: Making the Internet User-Friendly 78
1.11.3 The Cloud 78
1.11.4 Internet of Things 79

1.12 Software Technologies 80
1.13 How Big Is Big Data? 81

1.13.1 Big Data Analytics 86
1.13.2 Data Science and Big Data Are Making a Difference: Use Cases 87

1.14 Case Study—A Big-Data Mobile Application 88
1.15 Intro to Data Science: Artificial Intelligence—at the Intersection of

CS and Data Science 90

Contents

_ _ _ _ g y, y ,

8 Contents

2 Introduction to Python Programming 97
2.1 Introduction 98
2.2 Variables and Assignment Statements 98
2.3 Arithmetic 100
2.4 Function print and an Intro to Single- and Double-Quoted Strings 104
2.5 Triple-Quoted Strings 106
2.6 Getting Input from the User 107
2.7 Decision Making: The if Statement and Comparison Operators 109
2.8 Objects and Dynamic Typing 114
2.9 Intro to Data Science: Basic Descriptive Statistics 116
2.10 Wrap-Up 118

3 Control Statements and Program Development 121
3.1 Introduction 122
3.2 Algorithms 122
3.3 Pseudocode 123
3.4 Control Statements 123
3.5 if Statement 126
3.6 if…else and if…elif…else Statements 128
3.7 while Statement 133
3.8 for Statement 134

3.8.1 Iterables, Lists and Iterators 136
3.8.2 Built-In range Function 136

3.9 Augmented Assignments 137
3.10 Program Development: Sequence-Controlled Repetition 138

3.10.1 Requirements Statement 138
3.10.2 Pseudocode for the Algorithm 138
3.10.3 Coding the Algorithm in Python 139
3.10.4 Introduction to Formatted Strings 140

3.11 Program Development: Sentinel-Controlled Repetition 141
3.12 Program Development: Nested Control Statements 145
3.13 Built-In Function range: A Deeper Look 149
3.14 Using Type Decimal for Monetary Amounts 150
3.15 break and continue Statements 153
3.16 Boolean Operators and, or and not 154
3.17 Intro to Data Science: Measures of Central Tendency—

Mean, Median and Mode 157
3.18 Wrap-Up 159

4 Functions 167
4.1 Introduction 168
4.2 Defining Functions 168
4.3 Functions with Multiple Parameters 171
4.4 Random-Number Generation 173

_ _ _ _ g y, y ,

Contents 9

4.5 Case Study: A Game of Chance 176
4.6 Python Standard Library 179
4.7 math Module Functions 180
4.8 Using IPython Tab Completion for Discovery 181
4.9 Default Parameter Values 183
4.10 Keyword Arguments 184
4.11 Arbitrary Argument Lists 184
4.12 Methods: Functions That Belong to Objects 186
4.13 Scope Rules 186
4.14 import: A Deeper Look 188
4.15 Passing Arguments to Functions: A Deeper Look 190
4.16 Function-Call Stack 193
4.17 Functional-Style Programming 194
4.18 Intro to Data Science: Measures of Dispersion 196
4.19 Wrap-Up 198

5 Sequences: Lists and Tuples 203
5.1 Introduction 204
5.2 Lists 204
5.3 Tuples 209
5.4 Unpacking Sequences 211
5.5 Sequence Slicing 214
5.6 del Statement 217
5.7 Passing Lists to Functions 219
5.8 Sorting Lists 220
5.9 Searching Sequences 222
5.10 Other List Methods 224
5.11 Simulating Stacks with Lists 226
5.12 List Comprehensions 227
5.13 Generator Expressions 229
5.14 Filter, Map and Reduce 230
5.15 Other Sequence Processing Functions 233
5.16 Two-Dimensional Lists 235
5.17 Intro to Data Science: Simulation and Static Visualizations 239

5.17.1 Sample Graphs for 600, 60,000 and 6,000,000 Die Rolls 239
5.17.2 Visualizing Die-Roll Frequencies and Percentages 241

5.18 Wrap-Up 247

6 Dictionaries and Sets 257
6.1 Introduction 258
6.2 Dictionaries 258

6.2.1 Creating a Dictionary 258
6.2.2 Iterating through a Dictionary 260
6.2.3 Basic Dictionary Operations 260

_ _ _ _ g y, y ,

10 Contents

6.2.4 Dictionary Methods keys and values 262
6.2.5 Dictionary Comparisons 264
6.2.6 Example: Dictionary of Student Grades 265
6.2.7 Example: Word Counts 266
6.2.8 Dictionary Method update 268
6.2.9 Dictionary Comprehensions 268

6.3 Sets 269
6.3.1 Comparing Sets 271
6.3.2 Mathematical Set Operations 273
6.3.3 Mutable Set Operators and Methods 274
6.3.4 Set Comprehensions 276

6.4 Intro to Data Science: Dynamic Visualizations 276
6.4.1 How Dynamic Visualization Works 276
6.4.2 Implementing a Dynamic Visualization 279

6.5 Wrap-Up 282

7 Array-Oriented Programming with NumPy 287
7.1 Introduction 288
7.2 Creating arrays from Existing Data 289
7.3 array Attributes 290
7.4 Filling arrays with Specific Values 292
7.5 Creating arrays from Ranges 292
7.6 List vs. array Performance: Introducing %timeit 294
7.7 array Operators 296
7.8 NumPy Calculation Methods 298
7.9 Universal Functions 300
7.10 Indexing and Slicing 302
7.11 Views: Shallow Copies 304
7.12 Deep Copies 306
7.13 Reshaping and Transposing 307
7.14 Intro to Data Science: pandas Series and DataFrames 310

7.14.1 pandas Series 310
7.14.2 DataFrames 315

7.15 Wrap-Up 323

8 Strings: A Deeper Look 331
8.1 Introduction 332
8.2 Formatting Strings 333

8.2.1 Presentation Types 333
8.2.2 Field Widths and Alignment 334
8.2.3 Numeric Formatting 335
8.2.4 String’s format Method 336

8.3 Concatenating and Repeating Strings 337
8.4 Stripping Whitespace from Strings 338

_ _ _ _ g y, y ,

Contents 11

8.5 Changing Character Case 339
8.6 Comparison Operators for Strings 340
8.7 Searching for Substrings 340
8.8 Replacing Substrings 342
8.9 Splitting and Joining Strings 342
8.10 Characters and Character-Testing Methods 345
8.11 Raw Strings 346
8.12 Introduction to Regular Expressions 347

8.12.1 re Module and Function fullmatch 348
8.12.2 Replacing Substrings and Splitting Strings 351
8.12.3 Other Search Functions; Accessing Matches 352

8.13 Intro to Data Science: Pandas, Regular Expressions and Data Munging 355
8.14 Wrap-Up 360

9 Files and Exceptions 367
9.1 Introduction 368
9.2 Files 369
9.3 Text-File Processing 369

9.3.1 Writing to a Text File: Introducing the with Statement 370
9.3.2 Reading Data from a Text File 371

9.4 Updating Text Files 373
9.5 Serialization with JSON 375
9.6 Focus on Security: pickle Serialization and Deserialization 378
9.7 Additional Notes Regarding Files 378
9.8 Handling Exceptions 379

9.8.1 Division by Zero and Invalid Input 380
9.8.2 try Statements 380
9.8.3 Catching Multiple Exceptions in One except Clause 383
9.8.4 What Exceptions Does a Function or Method Raise? 384
9.8.5 What Code Should Be Placed in a try Suite? 384

9.9 finally Clause 384
9.10 Explicitly Raising an Exception 387
9.11 (Optional) Stack Unwinding and Tracebacks 387
9.12 Intro to Data Science: Working with CSV Files 390

9.12.1 Python Standard Library Module csv 390
9.12.2 Reading CSV Files into Pandas DataFrames 392
9.12.3 Reading the Titanic Disaster Dataset 394
9.12.4 Simple Data Analysis with the Titanic Disaster Dataset 395
9.12.5 Passenger Age Histogram 396

9.13 Wrap-Up 397

10 Object-Oriented Programming 403
10.1 Introduction 404
10.2 Custom Class Account 406

_ _ _ _ g y, y ,

12 Contents

10.2.1 Test-Driving Class Account 406
10.2.2 Account Class Definition 408
10.2.3 Composition: Object References as Members of Classes 409

10.3 Controlling Access to Attributes 411
10.4 Properties for Data Access 412

10.4.1 Test-Driving Class Time 412
10.4.2 Class Time Definition 414
10.4.3 Class Time Definition Design Notes 418

10.5 Simulating “Private” Attributes 419
10.6 Case Study: Card Shuffling and Dealing Simulation 421

10.6.1 Test-Driving Classes Card and DeckOfCards 421
10.6.2 Class Card—Introducing Class Attributes 423
10.6.3 Class DeckOfCards 425
10.6.4 Displaying Card Images with Matplotlib 426

10.7 Inheritance: Base Classes and Subclasses 430
10.8 Building an Inheritance Hierarchy; Introducing Polymorphism 432

10.8.1 Base Class CommissionEmployee 432
10.8.2 Subclass SalariedCommissionEmployee 435
10.8.3 Processing CommissionEmployees and

SalariedCommissionEmployees Polymorphically 439
10.8.4 A Note About Object-Based and Object-Oriented Programming 439

10.9 Duck Typing and Polymorphism 440
10.10 Operator Overloading 441

10.10.1 Test-Driving Class Complex 442
10.10.2 Class Complex Definition 443

10.11 Exception Class Hierarchy and Custom Exceptions 445
10.12 Named Tuples 447
10.13 A Brief Intro to Python 3.7’s New Data Classes 448

10.13.1 Creating a Card Data Class 449
10.13.2 Using the Card Data Class 451
10.13.3 Data Class Advantages over Named Tuples 453
10.13.4 Data Class Advantages over Traditional Classes 454

10.14 Unit Testing with Docstrings and doctest 454
10.15 Namespaces and Scopes 459
10.16 Intro to Data Science: Time Series and Simple Linear Regression 462
10.17 Wrap-Up 471

11 Computer Science Thinking: Recursion,
Searching, Sorting and Big O 479

11.1 Introduction 480
11.2 Factorials 481
11.3 Recursive Factorial Example 481
11.4 Recursive Fibonacci Series Example 484
11.5 Recursion vs. Iteration 487
11.6 Searching and Sorting 488

_ _ _ _ g y, y ,

Contents 13

11.7 Linear Search 488
11.8 Efficiency of Algorithms: Big O 490
11.9 Binary Search 492

11.9.1 Binary Search Implementation 493
11.9.2 Big O of the Binary Search 495

11.10 Sorting Algorithms 496
11.11 Selection Sort 496

11.11.1 Selection Sort Implementation 497
11.11.2 Utility Function print_pass 498
11.11.3 Big O of the Selection Sort 499

11.12 Insertion Sort 499
11.12.1 Insertion Sort Implementation 500
11.12.2 Big O of the Insertion Sort 501

11.13 Merge Sort 502
11.13.1 Merge Sort Implementation 502
11.13.2 Big O of the Merge Sort 507

11.14 Big O Summary for This Chapter’s Searching and Sorting Algorithms 507
11.15 Visualizing Algorithms 508

11.15.1 Generator Functions 510
11.15.2 Implementing the Selection Sort Animation 511

11.16 Wrap-Up 516

12 Natural Language Processing (NLP) 525
12.1 Introduction 526
12.2 TextBlob 527

12.2.1 Create a TextBlob 529
12.2.2 Tokenizing Text into Sentences and Words 530
12.2.3 Parts-of-Speech Tagging 530
12.2.4 Extracting Noun Phrases 531
12.2.5 Sentiment Analysis with TextBlob’s Default Sentiment Analyzer 532
12.2.6 Sentiment Analysis with the NaiveBayesAnalyzer 534
12.2.7 Language Detection and Translation 535
12.2.8 Inflection: Pluralization and Singularization 537
12.2.9 Spell Checking and Correction 537
12.2.10 Normalization: Stemming and Lemmatization 538
12.2.11 Word Frequencies 539
12.2.12 Getting Definitions, Synonyms and Antonyms from WordNet 540
12.2.13 Deleting Stop Words 542
12.2.14 n-grams 544

12.3 Visualizing Word Frequencies with Bar Charts and Word Clouds 545
12.3.1 Visualizing Word Frequencies with Pandas 545
12.3.2 Visualizing Word Frequencies with Word Clouds 548

12.4 Readability Assessment with Textatistic 551
12.5 Named Entity Recognition with spaCy 553
12.6 Similarity Detection with spaCy 555

_ _ _ _ g y, y ,

14 Contents

12.7 Other NLP Libraries and Tools 557
12.8 Machine Learning and Deep Learning Natural Language Applications 557
12.9 Natural Language Datasets 558
12.10 Wrap-Up 558

13 Data Mining Twitter 563
13.1 Introduction 564
13.2 Overview of the Twitter APIs 566
13.3 Creating a Twitter Account 567
13.4 Getting Twitter Credentials—Creating an App 568
13.5 What’s in a Tweet? 569
13.6 Tweepy 573
13.7 Authenticating with Twitter Via Tweepy 573
13.8 Getting Information About a Twitter Account 575
13.9 Introduction to Tweepy Cursors: Getting an Account’s

Followers and Friends 577
13.9.1 Determining an Account’s Followers 577
13.9.2 Determining Whom an Account Follows 580
13.9.3 Getting a User’s Recent Tweets 580

13.10 Searching Recent Tweets 582
13.11 Spotting Trends: Twitter Trends API 584

13.11.1 Places with Trending Topics 584
13.11.2 Getting a List of Trending Topics 585
13.11.3 Create a Word Cloud from Trending Topics 587

13.12 Cleaning/Preprocessing Tweets for Analysis 589
13.13 Twitter Streaming API 590

13.13.1 Creating a Subclass of StreamListener 591
13.13.2 Initiating Stream Processing 593

13.14 Tweet Sentiment Analysis 595
13.15 Geocoding and Mapping 599

13.15.1 Getting and Mapping the Tweets 600
13.15.2 Utility Functions in tweetutilities.py 604
13.15.3 Class LocationListener 606

13.16 Ways to Store Tweets 607
13.17 Twitter and Time Series 608
13.18 Wrap-Up 608

14 IBM Watson and Cognitive Computing 613
14.1 Introduction: IBM Watson and Cognitive Computing 614
14.2 IBM Cloud Account and Cloud Console 616
14.3 Watson Services 616
14.4 Additional Services and Tools 620
14.5 Watson Developer Cloud Python SDK 621
14.6 Case Study: Traveler’s Companion Translation App 622

_ _ _ _ g y, y ,

Contents 15

14.6.1 Before You Run the App 623
14.6.2 Test-Driving the App 624
14.6.3 SimpleLanguageTranslator.py Script Walkthrough 625

14.7 Watson Resources 635
14.8 Wrap-Up 637

15 Machine Learning: Classification, Regression
and Clustering 641

15.1 Introduction to Machine Learning 642
15.1.1 Scikit-Learn 643
15.1.2 Types of Machine Learning 644
15.1.3 Datasets Bundled with Scikit-Learn 646
15.1.4 Steps in a Typical Data Science Study 647

15.2 Case Study: Classification with k-Nearest Neighbors and the
Digits Dataset, Part 1 647
15.2.1 k-Nearest Neighbors Algorithm 649
15.2.2 Loading the Dataset 650
15.2.3 Visualizing the Data 654
15.2.4 Splitting the Data for Training and Testing 656
15.2.5 Creating the Model 657
15.2.6 Training the Model 658
15.2.7 Predicting Digit Classes 658

15.3 Case Study: Classification with k-Nearest Neighbors and the
Digits Dataset, Part 2 660
15.3.1 Metrics for Model Accuracy 660
15.3.2 K-Fold Cross-Validation 664
15.3.3 Running Multiple Models to Find the Best One 665
15.3.4 Hyperparameter Tuning 667

15.4 Case Study: Time Series and Simple Linear Regression 668
15.5 Case Study: Multiple Linear Regression with the California

Housing Dataset 673
15.5.1 Loading the Dataset 674
15.5.2 Exploring the Data with Pandas 676
15.5.3 Visualizing the Features 678
15.5.4 Splitting the Data for Training and Testing 682
15.5.5 Training the Model 682
15.5.6 Testing the Model 683
15.5.7 Visualizing the Expected vs. Predicted Prices 684
15.5.8 Regression Model Metrics 685
15.5.9 Choosing the Best Model 686

15.6 Case Study: Unsupervised Machine Learning, Part 1—
Dimensionality Reduction 687

15.7 Case Study: Unsupervised Machine Learning, Part 2—
k-Means Clustering 690
15.7.1 Loading the Iris Dataset 692

_ _ _ _ g y, y ,

16 Contents

15.7.2 Exploring the Iris Dataset: Descriptive Statistics with Pandas 694
15.7.3 Visualizing the Dataset with a Seaborn pairplot 695
15.7.4 Using a KMeans Estimator 698
15.7.5 Dimensionality Reduction with Principal Component Analysis 700
15.7.6 Choosing the Best Clustering Estimator 703

15.8 Wrap-Up 704

16 Deep Learning 713
16.1 Introduction 714

16.1.1 Deep Learning Applications 716
16.1.2 Deep Learning Demos 717
16.1.3 Keras Resources 717

16.2 Keras Built-In Datasets 717
16.3 Custom Anaconda Environments 718
16.4 Neural Networks 720
16.5 Tensors 722
16.6 Convolutional Neural Networks for Vision; Multi-Classification

with the MNIST Dataset 724
16.6.1 Loading the MNIST Dataset 725
16.6.2 Data Exploration 726
16.6.3 Data Preparation 728
16.6.4 Creating the Neural Network 730
16.6.5 Training and Evaluating the Model 739
16.6.6 Saving and Loading a Model 744

16.7 Visualizing Neural Network Training with TensorBoard 745
16.8 ConvnetJS: Browser-Based Deep-Learning Training and Visualization 748
16.9 Recurrent Neural Networks for Sequences; Sentiment Analysis

with the IMDb Dataset 749
16.9.1 Loading the IMDb Movie Reviews Dataset 750
16.9.2 Data Exploration 751
16.9.3 Data Preparation 753
16.9.4 Creating the Neural Network 754
16.9.5 Training and Evaluating the Model 757

16.10 Tuning Deep Learning Models 758
16.11 Convnet Models Pretrained on ImageNet 759
16.12 Reinforcement Learning 760

16.12.1 Deep Q-Learning 761
16.12.2 OpenAI Gym 761

16.13 Wrap-Up 762

17 Big Data: Hadoop, Spark, NoSQL and IoT 771
17.1 Introduction 772
17.2 Relational Databases and Structured Query Language (SQL) 776

17.2.1 A books Database 778

_ _ _ _ g y, y ,

Contents 17

17.2.2 SELECT Queries 782
17.2.3 WHERE Clause 782
17.2.4 ORDER BY Clause 784
17.2.5 Merging Data from Multiple Tables: INNER JOIN 785
17.2.6 INSERT INTO Statement 786
17.2.7 UPDATE Statement 787
17.2.8 DELETE FROM Statement 787

17.3 NoSQL and NewSQL Big-Data Databases: A Brief Tour 789
17.3.1 NoSQL Key–Value Databases 789
17.3.2 NoSQL Document Databases 790
17.3.3 NoSQL Columnar Databases 790
17.3.4 NoSQL Graph Databases 791
17.3.5 NewSQL Databases 791

17.4 Case Study: A MongoDB JSON Document Database 792
17.4.1 Creating the MongoDB Atlas Cluster 793
17.4.2 Streaming Tweets into MongoDB 794

17.5 Hadoop 803
17.5.1 Hadoop Overview 803
17.5.2 Summarizing Word Lengths in Romeo and Juliet via MapReduce 806
17.5.3 Creating an Apache Hadoop Cluster in Microsoft

Azure HDInsight 806
17.5.4 Hadoop Streaming 808
17.5.5 Implementing the Mapper 808
17.5.6 Implementing the Reducer 809
17.5.7 Preparing to Run the MapReduce Example 810
17.5.8 Running the MapReduce Job 811

17.6 Spark 814
17.6.1 Spark Overview 814
17.6.2 Docker and the Jupyter Docker Stacks 815
17.6.3 Word Count with Spark 818
17.6.4 Spark Word Count on Microsoft Azure 821

17.7 Spark Streaming: Counting Twitter Hashtags Using the
pyspark-notebook Docker Stack 825
17.7.1 Streaming Tweets to a Socket 825
17.7.2 Summarizing Tweet Hashtags; Introducing Spark SQL 828

17.8 Internet of Things and Dashboards 834
17.8.1 Publish and Subscribe 836
17.8.2 Visualizing a PubNub Sample Live Stream with a Freeboard

Dashboard 836
17.8.3 Simulating an Internet-Connected Thermostat in Python 838
17.8.4 Creating the Dashboard with Freeboard.io 840
17.8.5 Creating a Python PubNub Subscriber 842

17.9 Wrap-Up 846

Index 853

_ _ _ _ g y, y ,

_ _ _ _ g y, y ,

This page is intentionally left blank

“There’s gold in them thar hills!”1

For many decades, some powerful trends have been in place. Computer hardware has rap-
idly been getting faster, cheaper and smaller. Internet bandwidth (that is, its information
carrying capacity) has rapidly been getting larger and cheaper. And quality computer soft-
ware has become ever more abundant and essentially free or nearly free through the “open
source” movement. Soon, the “Internet of Things” will connect tens of billions of devices
of every imaginable type. These will generate enormous volumes of data at rapidly increas-
ing speeds and quantities.

Not so many years ago, if people had told us that we’d write a college-level introduc-
tory programming textbook with words like “Big Data” and “Cloud” in the title and a
graphic of a multicolored whale (emblematic of “big”) on the cover, our reaction might
have been, “Huh?” And, if they’d told us we’d include AI (for artificial intelligence) in the
title, we might have said, “Really? Isn’t that pretty advanced stuff for novice programmers?”

If people had said, we’d include “Data Science” in the title, we might have responded,
“Isn’t data already included in the domain of ‘Computer Science’? Why would we need a
separate academic discipline for it?” Well, in programming today, the latest innovations
are “all about the data”—data science, data analytics, big data, relational databases (SQL),
and NoSQL and NewSQL databases.

So, here we are! Welcome to Intro to Python for Computer Science and Data Science:
Learning to Program with AI, Big Data and the Cloud.

In this book, you’ll learn hands-on with today’s most compelling, leading-edge com-
puting technologies—and, as you’ll see, with an easily tunable mix of computer science
and data science appropriate for introductory courses in those and related disciplines. And,
you’ll program in Python—one of the world’s most popular languages and the fastest
growing among them. In this Preface, we present the “soul of the book.”

Professional programmers often quickly discover that they like Python. They appre-
ciate its expressive power, readability, conciseness and interactivity. They like the world of
open-source software development that’s generating an ever-growing base of reusable soft-
ware for an enormous range of application areas.

Whether you’re an instructor, a novice student or an experienced professional pro-
grammer, this book has much to offer you. Python is an excellent first programming lan-
guage for novices and is equally appropriate for developing industrial-strength applications.
For the novice, the early chapters establish a solid programming foundation.

We hope you’ll find Intro to Python for Computer Science and Data Science educational,
entertaining and challenging. It has been a joy to work on this project.

1. Source unknown, frequently misattributed to Mark Twain.

Preface

_ _ _ _ g y, y ,

20 Preface

Python for Computer Science and Data Science Education
Many top U.S. universities have switched to Python as their language of choice for teach-
ing introductory computer science, with “eight of the top 10 CS departments (80%), and
27 of the top 39 (69%)” using Python.2 It’s now particularly popular for educational and
scientific computing,3 and it recently surpassed R as the most popular data science pro-
gramming language.4,5,6

Modular Architecture
We anticipate that the computer science undergraduate curriculum will evolve to include
a data science component—this book is designed to facilitate that and to meet the needs
of introductory data science courses with a Python programming component.

The book’s modular architecture (please see the Table of Contents graphic on the
book’s first page) helps us meet the diverse needs of computer science, data science and
related audiences. Instructors can adapt it conveniently to a wide range of courses offered
to students drawn from many majors.

Chapters 1–11 cover traditional introductory computer science programming topics.
Chapters 1–10 each include an optional brief Intro to Data Science section introducing
artificial intelligence, basic descriptive statistics, measures of central tendency and disper-
sion, simulation, static and dynamic visualization, working with CSV files, pandas for data
exploration and data wrangling, time series and simple linear regression. These help you
prepare for the data science, AI, big data and cloud case studies in Chapters 12–17, which
present opportunities for you to use real-world datasets in complete case studies.

After covering Python Chapters 1–5 and a few key parts of Chapters 6–7, you’ll be
able to handle significant portions of the data science, AI and big data case studies in
Chapters 12–17, which are appropriate for all contemporary programming courses:

• Computer science courses will likely work through more of Chapters 1–11 and
fewer of the Intro to Data Science sections in Chapters 1–10. CS instructors will
want to cover some or all of the case-study Chapters 12–17.

• Data science courses will likely work through fewer of Chapters 1–11, most or all
of the Intro to Data Science sections in Chapters 1–10, and most or all of the
case-study Chapters 12–17.

The “Chapter Dependencies” section of this Preface will help instructors plan their syllabi
in the context of the book’s unique architecture.

Chapters 12–17 are loaded with cool, powerful, contemporary content. They present
hands-on implementation case studies on topics such as supervised machine learning, unsu-
pervised machine learning, deep learning, reinforcement learning (in the exercises), natural

2. Guo, Philip., “Python Is Now the Most Popular Introductory Teaching Language at Top U.S. Univer-
sities,” ACM, July 07, 2014, https://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-
the-most-popular-introductory-teaching-language-at-top-u-s-universities/fulltext.

3. https://www.oreilly.com/ideas/5-things-to-watch-in-python-in-2017.
4. https://www.kdnuggets.com/2017/08/python-overtakes-r-leader-analytics-data-

science.html.
5. https://www.r-bloggers.com/data-science-job-report-2017-r-passes-sas-but-python-

leaves-them-both-behind/.
6. https://www.oreilly.com/ideas/5-things-to-watch-in-python-in-2017.

_ _ _ _ g y, y ,

https://www.oreilly.com/ideas/5-things-to-watch-in-python-in-2017
https://www.r-bloggers.com/data-science-job-report-2017-r-passes-sas-but-python-leaves-them-both-behind/
https://www.r-bloggers.com/data-science-job-report-2017-r-passes-sas-but-python-leaves-them-both-behind/
https://www.kdnuggets.com/2017/08/python-overtakes-r-leader-analytics-data-science.html
https://www.kdnuggets.com/2017/08/python-overtakes-r-leader-analytics-data-science.html
https://www.oreilly.com/ideas/5-things-to-watch-in-python-in-2017
https://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-u-s-universities/fulltext
https://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-u-s-universities/fulltext

 Audiences for the Book 21

language processing, data mining Twitter, cognitive computing with IBM’s Watson, big
data and more. Along the way, you’ll acquire a broad literacy of data science terms and con-
cepts, ranging from briefly defining terms to using concepts in small, medium and large pro-
grams. Browsing the book’s detailed index will give you a sense of the breadth of coverage.

Audiences for the Book
The modular architecture makes this book appropriate for several audiences:

• All standard Python computer science and related majors. First and foremost, our
book is a solid contemporary Python CS 1 entry. The computing curriculum rec-
ommendations from the ACM/IEEE list five types of computing programs: Com-
puter Engineering, Computer Science, Information Systems, Information
Technology and Software Engineering.7 The book is appropriate for each of these.

• Undergraduate courses for data science majors—Our book is useful in many
data science courses. It follows the curriculum recommendations for integration
of all the key areas in all courses, as appropriate for intro courses. In the proposed
data science curriculum, the book can be the primary textbook for the first com-
puter science course or the first data science course, then be used as a Python ref-
erence throughout the upper curriculum.

• Service courses for students who are not computer science or data science majors.

• Graduate courses in data science—The book can be used as the primary text-
book in the first course, then as a Python reference in other graduate-level data
science courses.

• Two-year colleges—These schools will increasingly offer courses that prepare
students for data science programs in the four-year colleges—the book is an ap-
propriate option for that purpose.

• High schools—Just as they began teaching computer classes in response to strong
interest, many are already teaching Python programming and data science class-
es.8 According to a recent article on LinkedIn, “data science should be taught in
high school,” where the “curriculum should mirror the types of careers that our
children will go into, focused directly on where jobs and technology are going.”9

We believe that data science could soon become a popular college advanced-
placement course and that eventually there will be a data science AP exam.

• Professional industry training courses.

Key Features

KIS (Keep It Simple), KIS (Keep it Small), KIT (Keep it Topical)
• Keep it simple—In every aspect of the book and its instructor and student sup-

plements, we strive for simplicity and clarity. For example, when we present nat-

7. https://www.acm.org/education/curricula-recommendations.
8. http://datascience.la/introduction-to-data-science-for-high-school-students/.
9. https://www.linkedin.com/pulse/data-science-should-taught-high-school-rebecca-

croucher/.

_ _ _ _ g y, y ,

https://www.linkedin.com/pulse/data-science-should-taught-high-school-rebecca-croucher/
https://www.linkedin.com/pulse/data-science-should-taught-high-school-rebecca-croucher/
http://datascience.la/introduction-to-data-science-for-high-school-students/
https://www.acm.org/education/curricula-recommendations

22 Preface

ural language processing, we use the simple and intuitive TextBlob library rather
than the more complex NLTK. In general, when multiple libraries could be used
to perform similar tasks, we use the simplest one.

• Keep it small—Most of the book’s 538 examples are small—often just a few lines
of code, with immediate interactive IPython feedback. We use large examples as
appropriate in approximately 40 larger scripts and complete case studies.

• Keep it topical—We read scores of recent Python-programming and data science
textbooks and professional books. In all we browsed, read or watched about
15,000 current articles, research papers, white papers, videos, blog posts, forum
posts and documentation pieces. This enabled us to “take the pulse” of the
Python, computer science, data science, AI, big data and cloud communities to
create 1566 up-to-the-minute examples, exercises and projects (EEPs).

IPython’s Immediate-Feedback, Explore, Discover and Experiment Pedagogy
• The ideal way to learn from this book is to read it and run the code examples in

parallel. Throughout the book, we use the IPython interpreter, which provides
a friendly, immediate-feedback, interactive mode for quickly exploring, discover-
ing and experimenting with Python and its extensive libraries.

• Most of the code is presented in small, interactive IPython sessions (which we
call IIs). For each code snippet you write, IPython immediately reads it, evaluates
it and prints the results. This instant feedback keeps your attention, boosts learn-
ing, facilitates rapid prototyping and speeds the software-development process.

• Our books always emphasize the live-code teaching approach, focusing on com-
plete, working programs with sample inputs and outputs. IPython’s “magic” is that
it turns snippets into live code that “comes alive” as you enter each line. This pro-
motes learning and encourages experimentation.

• IPython is a great way to learn the error messages associated with common errors.
We’ll intentionally make errors to show you what happens. When we say some-
thing is an error, try it to see what happens.

• We use this same immediate-feedback philosophy in the book’s 557 Self-Check
Exercises (ideal for “flipped classrooms”—we’ll soon say more about that phe-
nomenon) and many of the 471 end-of-chapter exercises and projects.

Python Programming Fundamentals
• First and foremost, this is an introductory Python textbook. We provide rich cov-

erage of Python and general programming fundamentals.

• We discuss Python’s programming models—procedural programming, func-
tional-style programming and object-oriented programming.

• We emphasize problem-solving and algorithm development.

• We use best practices to prepare students for industry.

• Functional-style programming is used throughout the book as appropriate. A
chart in Chapter 4 lists most of Python’s key functional-style programming capa-
bilities and the chapters in which we initially cover many of them.

_ _ _ _ g y, y ,

 Key Features 23

538 Examples, and 471 Exercises and Projects (EEPs)
• Students use a hands-on applied approach to learn from a broad selection of real-

world examples, exercises and projects (EEPs) drawn from computer science,
data science and many other fields.

• The 538 examples range from individual code snippets to complete computer
science, data science, artificial intelligence and big data case studies.

• The 471 exercises and projects naturally extend the chapter examples. Each
chapter concludes with a substantial set of exercises covering a wide variety of
topics. This helps instructors tailor their courses to the unique requirements of
their audiences and to vary course assignments each semester.

• The EEPs give you an engaging, challenging and entertaining introduction to
Python programming, including hands-on AI, computer science and data science.

• Students attack exciting and entertaining challenges with AI, big data and cloud
technologies like natural language processing, data mining Twitter, machine
learning, deep learning, Hadoop, MapReduce, Spark, IBM Watson, key data sci-
ence libraries (NumPy, pandas, SciPy, NLTK, TextBlob, spaCy, BeautifulSoup,
Textatistic, Tweepy, Scikit-learn, Keras), key visualization libraries (Matplotlib,
Seaborn, Folium) and more.

• Our EEPs encourage you to think into the future. We had the following idea as we
wrote this Preface—although it’s not in the text, many similar thought-provoking
projects are: With deep learning, the Internet of Things and large numbers of TV
cameras trained on sporting events, it will become possible to keep automatic statis-
tics, review the details of every play and resolve instant-replay reviews immediately.
So, fans won’t have to endure the bad calls and delays common in today’s sporting
events. Here’s a thought—we can use these technologies to eliminate referees. Why
not? We’re increasingly entrusting our lives to other deep-learning-based technolo-
gies like robotic surgeons and self-driving cars!

• The project exercises encourage you to go deeper into what you’ve learned and
research technologies we have not covered. Projects are often larger in scope and
may require significant Internet research and implementation effort.

• In the instructor supplements, we provide solutions to many exercises, including
most in the core Python Chapters 1–11. Solutions are available only to instruc-
tors—see the section “Instructor Supplements on Pearson’s Instructor Resource
Center” later in this Preface for details. We do not provide solutions to the proj-
ect and research exercises.

• We encourage you to look at lots of demos and free open-source code examples
(available on sites such as GitHub) for inspiration on additional class projects, term
projects, directed-study projects, capstone-course projects and thesis research.

557 Self-Check Exercises and Answers
• Most sections end with an average of three Self-Check Exercises.

• Fill-in-the-blank, true/false and discussion Self Checks enable you to test your
understanding of the concepts you just studied.

_ _ _ _ g y, y ,

24 Preface

• IPython interactive Self Checks give you a chance to try out and reinforce the
programming techniques you just learned.

• For rapid learning, answers immediately follow all Self-Check Exercises.

Avoid Heavy Math in Favor of English Explanations
• Data science topics can be highly mathematical. This book will be used in first com-

puter science and data science courses where students may not have deep mathe-
matical backgrounds, so we avoid heavy math, leaving it to upper-level courses.

• We capture the conceptual essence of the mathematics and put it to work in our
examples, exercises and projects. We do this by using Python libraries such as sta-
tistics, NumPy, SciPy, pandas and many others, which hide the mathematical
complexity. So, it’s straightforward for students to get many of the benefits of
mathematical techniques like linear regression without having to know the math-
ematics behind them. In the machine-learning and deep-learning examples, we
focus on creating objects that do the math for you “behind the scenes.” This is one
of the keys to object-based programming. It’s like driving a car safely to your des-
tination without knowing all the math, engineering and science that goes into
building engines, transmissions, power steering and anti-skid braking systems.

Visualizations
• 67 full-color static, dynamic, animated and interactive two-dimensional and

three-dimensional visualizations (charts, graphs, pictures, animations etc.) help
you understand concepts.

• We focus on high-level visualizations produced by Matplotlib, Seaborn, pandas
and Folium (for interactive maps).

• We use visualizations as a pedagogic tool. For example, we make the law of large
numbers “come alive” in a dynamic die-rolling simulation and bar chart. As the
number of rolls increases, you’ll see each face’s percentage of the total rolls grad-
ually approach 16.667% (1/6th) and the sizes of the bars representing the per-
centages equalize.

• You need to get to know your data. One way is simply to look at the raw data. For
even modest amounts of data, you could rapidly get lost in the detail. Visualiza-
tions are especially crucial in big data for data exploration and communicating
reproducible research results, where the data items can number in the millions,
billions or more. A common saying is that a picture is worth a thousand words10—
in big data, a visualization could be worth billions or more items in a database.

• Sometimes, you need to “fly 40,000 feet above the data” to see it “in the large.”
Descriptive statistics help but can be misleading. Anscombe’s quartet, which
you’ll investigate in the exercises, demonstrates through visualizations that sig-
nificantly different datasets can have nearly identical descriptive statistics.

• We show the visualization and animation code so you can implement your own.
We also provide the animations in source-code files and as Jupyter Notebooks, so

10. https://en.wikipedia.org/wiki/A_picture_is_worth_a_thousand_words.

_ _ _ _ g y, y ,

https://en.wikipedia.org/wiki/A_picture_is_worth_a_thousand_words

 Key Features 25

you can conveniently customize the code and animation parameters, re-execute the
animations and see the effects of the changes.

• Many exercises ask you to create your own visualizations.

Data Experiences
• The undergraduate data science curriculum proposal says “Data experiences

need to play a central role in all courses.”11

• In the book’s examples, exercises and projects (EEPs), you’ll work with many
real-world datasets and data sources. There’s a wide variety of free open datasets
available online for you to experiment with. Some of the sites we reference list
hundreds or thousands of datasets. We encourage you to explore these.

• We collected hundreds of syllabi, tracked down instructor dataset preferences
and researched the most popular datasets for supervised machine learning, unsu-
pervised machine learning and deep learning studies. Many of the libraries you’ll
use come bundled with popular datasets for experimentation.

• You’ll learn the steps required to obtain data and prepare it for analysis, analyze
that data using many techniques, tune your models and communicate your
results effectively, especially through visualization.

Thinking Like a Developer
• You’ll work with a developer focus, using such popular sites as GitHub and

StackOverflow, and doing lots of Internet research. Our Intro to Data Science
sections and case studies in Chapters 12–17 provide rich data experiences.

• GitHub is an excellent venue for finding open-source code to incorporate into
your projects (and to contribute your code to the open-source community). It’s
also a crucial element of the software developer’s arsenal with version control
tools that help teams of developers manage open-source (and private) projects.

• We encourage you to study developers’ code on sites like GitHub.

• To get ready for career work in computer science and data science, you’ll use an
extraordinary range of free and open-source Python and data science libraries,
free and open real-world datasets from government, industry and academia, and
free, free-trial and freemium offerings of software and cloud services.

Hands-On Cloud Computing
• Much of big data analytics occurs in the cloud, where it’s easy to scale dynamically

the amount of hardware and software your applications need. You’ll work with
various cloud-based services (some directly and some indirectly), including Twit-
ter, Google Translate, IBM Watson, Microsoft Azure, OpenMapQuest, geopy,
Dweet.io and PubNub. You’ll explore more in the exercises and projects.

• We encourage you to use free, free trial or freemium services from various cloud
vendors. We prefer those that don’t require a credit card because you don’t want

11. “Curriculum Guidelines for Undergraduate Programs in Data Science,” http://www.annualre-
views.org/doi/full/10.1146/annurev-statistics-060116-053930 (p. 18).

_ _ _ _ g y, y ,

http://www.annualreviews.org/doi/full/10.1146/annurev-statistics-060116-053930
http://www.annualreviews.org/doi/full/10.1146/annurev-statistics-060116-053930

26 Preface

to risk accidentally running up big bills. If you decide to use a service that
requires a credit card, ensure that the tier you’re using for free will not auto-
matically jump to a paid tier.

Database, Big Data and Big Data Infrastructure
• According to IBM (Nov. 2016), 90% of the world’s data was created in the last

two years.12 Evidence indicates that the speed of data creation is accelerating.

• According to a March 2016 AnalyticsWeek article, within five years there will be
over 50 billion devices connected to the Internet and by 2020 we’ll be producing
1.7 megabytes of new data every second for every person on the planet!13

• We include an optional treatment of relational databases and SQL with SQLite.

• Databases are critical big data infrastructure for storing and manipulating the mas-
sive amounts of data you’ll process. Relational databases process structured data—
they’re not geared to the unstructured and semi-structured data in big data applica-
tions. So, as big data evolved, NoSQL and NewSQL databases were created to
handle such data efficiently. We include a NoSQL and NewSQL overview and a
hands-on case study with a MongoDB JSON document database.

• We include a solid treatment of big data hardware and software infrastructure in
Chapter 17, “Big Data: Hadoop, Spark, NoSQL and IoT (Internet of Things).”

Artificial Intelligence Case Studies
• Why doesn’t this book have an artificial intelligence chapter? After all, AI is on

the cover. In the case study Chapters 12–16, we present artificial intelligence
topics (a key intersection between computer science and data science), including
natural language processing, data mining Twitter to perform sentiment analy-
sis, cognitive computing with IBM Watson, supervised machine learning,
unsupervised machine learning, deep learning and reinforcement learning (in
the exercises). Chapter 17 presents the big data hardware and software infrastruc-
ture that enables computer scientists and data scientists to implement leading-
edge AI-based solutions.

Computer Science
• The Python fundamentals treatment in Chapters 1–10 will get you thinking like

a computer scientist. Chapter 11, “Computer Science Thinking: Recursion,
Searching, Sorting and Big O,” gives you a more advanced perspective—these are
classic computer science topics. Chapter 11 emphasizes performance issues.

Built-In Collections: Lists, Tuples, Sets, Dictionaries
• There’s little reason today for most application developers to build custom data

structures. This is a subject for CS2 courses—our scope is strictly CS1 and the
corresponding data science course(s). The book features a solid two-chapter

12. https://public.dhe.ibm.com/common/ssi/ecm/wr/en/wrl12345usen/watson-customer-

engagement-watson-marketing-wr-other-papers-and-reports-wrl12345usen-20170719.pdf.
13. https://analyticsweek.com/content/big-data-facts/.

_ _ _ _ g y, y ,

https://analyticsweek.com/content/big-data-facts/
https://public.dhe.ibm.com/common/ssi/ecm/wr/en/wrl12345usen/watson-customer-engagement-watson-marketing-wr-other-papers-and-reports-wrl12345usen-20170719.pdf
https://public.dhe.ibm.com/common/ssi/ecm/wr/en/wrl12345usen/watson-customer-engagement-watson-marketing-wr-other-papers-and-reports-wrl12345usen-20170719.pdf

 Key Features 27

treatment of Python’s built-in data structures—lists, tuples, dictionaries and
sets—with which most data-structuring tasks can be accomplished.

Array-Oriented Programming with NumPy Arrays and Pandas Series/DataFrames
• We take an innovative approach in this book by focusing on three key data struc-

tures from open-source libraries—NumPy arrays, pandas Series and pandas
DataFrames. These libraries are used extensively in data science, computer sci-
ence, artificial intelligence and big data. NumPy offers as much as two orders of
magnitude higher performance than built-in Python lists.

• We include in Chapter 7 a rich treatment of NumPy arrays. Many libraries, such
as pandas, are built on NumPy. The Intro to Data Science sections in Chapters
7–9 introduce pandas Series and DataFrames, which along with NumPy arrays
are then used throughout the remaining chapters.

File Processing and Serialization
• Chapter 9 presents text-file processing, then demonstrates how to serialize objects

using the popular JSON (JavaScript Object Notation) format. JSON is a com-
monly used data-interchange format that you’ll frequently see used in the data sci-
ence chapters—often with libraries that hide the JSON details for simplicity.

• Many data science libraries provide built-in file-processing capabilities for load-
ing datasets into your Python programs. In addition to plain text files, we process
files in the popular CSV (comma-separated values) format using the Python
Standard Library’s csv module and capabilities of the pandas data science library.

Object-Based Programming
• In all the Python code we studied during our research for this book, we rarely

encountered custom classes. These are common in the powerful libraries used by
Python programmers.

• We emphasize using the enormous number of valuable classes that the Python
open-source community has packaged into industry standard class libraries.
You’ll focus on knowing what libraries are out there, choosing the ones you’ll
need for your app, creating objects from existing classes (usually in one or two
lines of code) and making them “jump, dance and sing.” This is called object-
based programming—it enables you to build impressive applications concisely,
which is a significant part of Python’s appeal.

• With this approach, you’ll be able to use machine learning, deep learning, rein-
forcement learning (in the exercises) and other AI technologies to solve a wide
range of intriguing problems, including cognitive computing challenges like
speech recognition and computer vision. In the past, with just an introductory
programming course, you never would have been able to tackle such tasks.

Object-Oriented Programming
• For computer science students, developing custom classes is a crucial object-

oriented programming skill, along with inheritance, polymorphism and duck
typing. We discuss these in Chapter 10.

_ _ _ _ g y, y ,

28 Preface

• The object-oriented programming treatment is modular, so instructors can pres-
ent basic or intermediate coverage.

• Chapter 10 includes a discussion of unit testing with doctest and a fun card-
shuffling-and-dealing simulation.

• The six data science, AI, big data and cloud chapters require only a few straight-
forward custom class definitions. Instructors who do not wish to cover Chapter
10 can have students simply mimic our class definitions.

Privacy
• In the exercises, you’ll research ever-stricter privacy laws such as HIPAA (Health

Insurance Portability and Accountability Act) in the United States and GDPR
(General Data Protection Regulation) for the European Union. A key aspect of
privacy is protecting users’ personally identifiable information (PII), and a key
challenge with big data is that it’s easy to cross-reference facts about individuals
among databases. We mention privacy issues in several places throughout the book.

Security
• Security is crucial to privacy. We deal with some Python-specific security issues.

• AI and big data present unique privacy, security and ethical challenges. In the ex-
ercises, students will research the OWASP Python Security Project (http://
www.pythonsecurity.org/), anomaly detection, blockchain (the technology be-
hind cryptocurrencies like BitCoin and Ethereum) and more.

Ethics
• Ethics conundrum: Suppose big data analytics with AI predicts that a person with

no criminal record has a significant chance of committing a serious crime. Should
that person be arrested? In the exercises, you’ll research this and other ethical
issues, including deep fakes (AI-generated images and videos that appear to be
real), bias in machine learning and CRISPR gene editing. Students also investigate
privacy and ethical issues surrounding AIs and intelligent assistants, such as IBM
Watson, Amazon Alexa, Apple Siri, Google Assistant and Microsoft Cortana.
For example, just recently, a judge ordered Amazon to turn over Alexa recordings
for use in a criminal case.14

Reproducibility
• In the sciences in general, and data science in particular, there’s a need to repro-

duce the results of experiments and studies, and to communicate those results
effectively. Jupyter Notebooks are a preferred means for doing this.

• We provide you with a Jupyter Notebooks experience to help meet the reproduc-
ibility recommendations of the data science undergraduate curriculum proposal.

• We discuss reproducibility throughout the book in the context of programming
techniques and software such as Jupyter Notebooks and Docker.

14. https://techcrunch.com/2018/11/14/amazon-echo-recordings-judge-murder-case/.

_ _ _ _ g y, y ,

https://techcrunch.com/2018/11/14/amazon-echo-recordings-judge-murder-case/
http://www.pythonsecurity.org/
http://www.pythonsecurity.org/

 Key Features 29

Transparency
• The data science curriculum proposal mentions data transparency. One aspect of

data transparency is the availability of data. Many governments and other organi-
zation now adhere to open-data principles, enabling anyone to access their data.15

We point you to a wide range of datasets that are made available by such entities.

• Other aspects of data transparency include determining that data is correct and
knowing its origin (think, for example, of “fake news”). Many of the datasets we
use are bundled with key libraries we present, such as Scikit-learn for machine
learning and Keras for deep learning. We also point you to various curated data-
set repositories such as the University of California Irvine (UCI) Machine
Learning Repository (with 450+ datasets)16 and Carnegie Mellon University’s
StatLib Datasets Archive (with 100+ datasets).17

Performance
• We use the timeit profiling tool in several examples and exercises to compare

the performance of different approaches to performing the same tasks. Other per-
formance-related discussions include generator expressions, NumPy arrays vs.
Python lists, performance of machine-learning and deep-learning models, and
Hadoop and Spark distributed-computing performance.

Big Data and Parallelism
• Computer applications have generally been good at doing one thing at a time.

Today’s more sophisticated applications need to be able to do many things in par-
allel. The human brain is believed to have the equivalent of 100 billion parallel
processors.18 For years we’ve written about parallelism at the program level,
which is complex and error-prone.

• In this book, rather than writing your own parallelization code, you’ll let libraries
like Keras running over TensorFlow, and big data tools like Hadoop and Spark
parallelize operations for you. In this big data/AI era, the sheer processing require-
ments of massive data apps demand taking advantage of true parallelism provided
by multicore processors, graphics processing units (GPUs), tensor processing
units (TPUs) and huge clusters of computers in the cloud. Some big data tasks
could have thousands of processors working in parallel to analyze massive
amounts of data in reasonable time. Sequentializing such processing is typically
not an option, because it would take too long.

15. https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digi-

tal/Our%20Insights/Big%20data%20The%20next%20frontier%20for%20innovation/

MGI_big_data_full_report.ashx (page 56).
16. https://archive.ics.uci.edu/ml/datasets.html.
17. http://lib.stat.cmu.edu/datasets/.
18. https://www.technologyreview.com/s/532291/fmri-data-reveals-the-number-of-

parallel-processes-running-in-the-brain/.

_ _ _ _ g y, y ,

https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Big%20data%20The%20next%20frontier%20for%20innovation/MGI_big_data_full_report.ashx
https://www.technologyreview.com/s/532291/fmri-data-reveals-the-number-of-parallel-processes-running-in-the-brain/
https://www.technologyreview.com/s/532291/fmri-data-reveals-the-number-of-parallel-processes-running-in-the-brain/
http://lib.stat.cmu.edu/datasets/
https://archive.ics.uci.edu/ml/datasets.html
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Big%20data%20The%20next%20frontier%20for%20innovation/MGI_big_data_full_report.ashx
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Big%20data%20The%20next%20frontier%20for%20innovation/MGI_big_data_full_report.ashx

30 Preface

Chapter Dependencies
If you’re an instructor planning your course syllabus or a professional deciding which
chapters to read, this section will help you make the best decisions. Please read the one-
page Table of Contents on the first page of the book—this will quickly familiarize you
with the book’s unique architecture. Teaching or reading the chapters in order is easiest.
However, much of the content in the Intro to Data Science sections at the ends of Chap-
ters 1–10 and the case studies in Chapters 12–17 requires only Chapters 1–5 and small
portions of Chapters 6–10 as discussed below.

Part 1: Python Fundamentals Quickstart
We recommend that all courses cover Python Chapters 1–5:

• Chapter 1, Introduction to Computers and Python, introduces concepts that
lay the groundwork for the Python programming in Chapters 2–11 and the big
data, artificial-intelligence and cloud-based case studies in Chapters 12–17. The
chapter also includes test-drives of IPython and Jupyter Notebooks.

• Chapter 2, Introduction to Python Programming, presents Python program-
ming fundamentals with code examples illustrating key language features.

• Chapter 3, Control Statements and Program Development, presents Python’s
control statements, focuses on problem-solving and algorithm development,
and introduces basic list processing.

• Chapter 4, Functions, introduces program construction using existing functions
and custom functions as building blocks, presents simulation techniques with
random-number generation and introduces tuple fundamentals.

• Chapter 5, Sequences: Lists and Tuples, presents Python’s built-in list and tuple
collections in more detail and begins our introduction to functional-style pro-
gramming.

Part 2: Python Data Structures, Strings and Files19

The following summarizes inter-chapter dependencies for Python Chapters 6–9 and
assumes that you’ve read Chapters 1–5.

• Chapter 6, Dictionaries and Sets—The Intro to Data Science section is not
dependent on Chapter 6’s contents.

• Chapter 7, Array-Oriented Programming with NumPy—The Intro to Data
Science section requires dictionaries (Chapter 6) and arrays (Chapter 7).

• Chapter 8, Strings: A Deeper Look—The Intro to Data Science section requires
raw strings and regular expressions (Sections 8.11–8.12), and pandas Series and
DataFrame features from Section 7.14’s Intro to Data Science.

• Chapter 9, Files and Exceptions—For JSON serialization, it’s useful to under-
stand dictionary fundamentals (Section 6.2). Also, the Intro to Data Science sec-
tion requires the built-in open function and the with statement (Section 9.3), and
pandas DataFrame features from Section 7.14’s Intro to Data Science.

19. We could have included Chapter 5 in Part 2. We placed it in Part 1 because that’s the group of chap-
ters all courses should cover.

_ _ _ _ g y, y ,

